Making Risk part of your Quality Management System

Presented by: Arlette Peterson

Chartz Consulting Inc.

Presentation

- Risk Assessment
- Contingency Planning
- Management of Change

Industry with Extremes

- High pressure up to 30,000 PSI
- Corrosive atmosphere
- High concentrations of H₂S gas
- Extreme operating temperatures,
 - -75 °F to +450°F

Industry with Extremes

Pump Jack near a Dinner

Blowout beside a freeway

Drilling performed next to a home

Deepwater Horizon, 2010

Protection of:

What is Risk

- An uncertain event
- In the future
- Has a cause and effect
- Impacts objectives

Risk Impacts

- Scope
- Quality
- Delivery
- Costs

Is Risk Management New?

- ISO 14001: Environmental
- OHSAS 18001/COR Health & Safety
- ► AS9100 Aerospace
- ISO 13485 Medical Devices
- ISO 31000 Risk Management

API Q1

- Developed to address QMS's for organizations that manufacture products or service for use in the petroleum and natural gas industry.
- Revised in June 2013 to include Risk Assessment and Management as well as Contingency Planning.

Definition of Risk per API Q1

Situation or circumstance that has a likelihood of occurring and a potentially negative consequence.

Risk Assessment Details

Risk Assessment Procedure

Tools, Techniques, Application

Product Delivery

Product Quality

Supplier/Materials

Facility/Equipment

Delivery of NC Product Competent Personnel

If applicable

Records required...

Risk Categories

- Product Delivery
- Product Quality

Product Delivery

- Work Environment
 - Lighting, humidity, temperature, contamination
- Supplier Performance
 - Material/Service availability/supply
- Preventive Maintenance
 - Equipment needed to produce, move and/or store product

Product Quality

- Nonconforming Product
 - Delivery of nonconforming product
- Product Inspection
 - Inspection and testing
- Personnel Competence
 - Availability of competent personnel

Risk Assessment & Management

Source: ISO 31000, Risk management — Principles and guidelines

Risk Management

Design system to:

- Analyze risks prior to performing activities
 - Identification of possible risk events
 - Assessing the likelihood of occurrence
 - Severity of the risk if it does occur
 - Define risk control measures in order to reduce or eliminate the risk
 - Applying corrective/preventive and mitigating actions so residual risk can be reduced to an acceptable level.

Risk Mitigation per API Q1
Reducing the severity of a risk when it does occur

Risk Register Example - Having a Party

Risk Category	Risk Name	Risk #	Probability (1-3)	Impact (1-3)	Risk Score	Mitigation	Contingency	Action By	Action When
Guests	The guests find the party boring	1.1	2	2	4	Invite crazy friends, provide sufficient liquor	Bring out the Karaoke	Mack	within 2hrs
Guests	Drunken brawl	1.2	1	3	3	Don't invite crazy friends, don't provide too much liquor	Call 911	Jerry	Now
Nature	Rain	2.1	2	2	4	Have the party indoors	Move the party indoors	Miles	10mins
Nature	Earthquake or fire	2.2	1	3	3	Start the party with instructions on what to do in the event of fire or earthquake	Implement	one	As per plan
	Not enough food	3.1	1	2	2	Have a buffet	Order pizza	Joe	30mins
Food	Food is spoiled	3.2	1	3	3	Store the food in deep freezer	Order pizza	Matt	30min

Where to Assess - Operational Risk

- Production Part Approval Process
- Manufacturing and on-time Delivery
- Outsourcing: Supplier performance
- Nonconforming Report and Planned Deviation (set up - scrap, rework)
- Incident and Accident Reporting

Where to Assess - Design Risk

- Product/Service Development
- Design Changes
- Aftermarket Activities
- Customer Complaints
- Warranty Work
- Repair Activities

Risk Identification

Risk Management Techniques

- Qualitative Techniques
 - Brainstorming
 - Assumptions analysis
 - Interviews
 - Checklist
 - Risk registers
 - Risk mapping
 - Probability impact table
 - FMEA: Failure Modes and Effects Analysis
 - other

Risk Management Techniques

- Quantitative Techniques
 - Decision Trees
 - Sensitivity Analysis What If Analysis
 - Probability Impact Grid
 - Excel Spreadsheet
 - other

5 Why's

- 5/Whys is an iterative question-asking technique used to explore the cause-andeffect relationships underlying a particular problem
- Pitfalls Doesn't guide you to ask the right "why" questions.

"If you do not know how to ask the right question, you discover nothing"

- W. Edwards Deming

Material

- Raw material defect
- Wrong component received from vendor
- Material exceeds shelf life

Manpower

- Absenteeism
- Lack of training
- Poor supervision on second shift

Machinery

- Machine down time
- Bottleneck in production
- Tooling problems

The Problem

Method

- Incorrect documents
- In-process errors
- Too much work

Measurement

- Bad calculations of time to manufacture
- Un-calibrated tools

Environment

- Incorrect temperature control
- Dust and dirt contamination

Risk Rating Matrix

	Occurrence								
Severity	1	2	3	4	5				
5	LOW	MED	HIGH	EXT	EXT				
4	LOW	MED	HIGH	HIGH	EXT				
3	LOW	MED	MED	HIGH	HIGH				
2	LOW	LOW	MED	MED	MED				
1	LOW	LOW	LOW	LOW	LOW				

<u>O x S</u>

Score: 0 - 5 = Low

Score: 6 - 10 = Medium

Score: 12 – 16 = High

Score: 20 - 25 = Extreme

Responsibilities

Process Owner

Quality Control

Engineering

Senior Management

Contingency Planning / Risk Treatment

API Q1 Contingency planning must include as a minimum:

- Actions required in response to significant risk scenarios to mitigate effects of disruptive incidents,
- Identification and assignment of responsibilities and authorities, and
- Internal and external communication controls.

- Systematic approach to identify what can go wrong.
- Not intended to think of every possible contingency, rather it is to encourage you to think about major contingencies and possible responses.

Also known as:

- Worst-case scenario plan,
- backup plan, or
- Disaster recovery plan

- What events may occur that require a response?
- What disasters might happen during execution of the plan?
- What scenarios are possible for the situation?
- What event would cause the greatest disruption of current activities and plans?
- What happens if costs of the plan are excessive?
- What happens if delays occur?
- What if key people leave the organization?
- What the expected moves of antagonists and competitors?
- Who or what might impede the implementation of the plan?

Management of Change

If a change has the potential to impact the quality of the product or the integrity of the quality management system.

Critical Suppliers

Management System Procedures

How Risk Tolerant Are You?

- 3 Characteristics:
- Risk Adverse: avoidance; easy choices

Facility Management

Risk Seeker: Start ups; Seeking advantages in a tough economy

Top Management

Risk Neutral: Risk handled on a case by case basis

Quality Manager

Successful Organizations

- Not shocked by risk
- Encourage transparency
- Open communication of risk

Successful Managers

- Utilization of historical data to identify risk
- Objectively communicate risk to management in a timely manner
- Mitigate risk and increase positive opportunities

"In God We Trust, Everyone else Must Bring Data"

Edwards Deming's

Thank you

Presented by: Arlette Peterson

Chartz Consulting Inc.

780.266.5090

apeterson@chartz.ca